

Extending Corpus-Based Discourse Analysis for Exploring Japanese Social Media

Philipp Heinrich¹ and Fabian Schäfer²

¹ Chair of Computational Corpus Linguistics, ² Chair of Japanese Studies
Friedrich-Alexander University of Erlangen-Nuremberg
September 17, 2018

Introduction

Background

- Exploring the Fukushima Effect
 - identification and analysis of the tempo-spatial propagation of discourses in the transnational algorithmic public sphere
 - case study: Fukushima Effect (cf. Gono'i, 2015)
 - data: mass and social media (German, Japanese)
 - Japanese Twitter
 - www.linguistik.fau.de/projects/efe/
 - funded by the Emerging Fields Initiative of FAU
- Team:
 - Chair of Computational Corpus Linguistics
 Prof. Dr. Stefan Evert, Philipp Heinrich
 - Chair of Japanese Studies
 Prof. Dr. Fabian Schäfer, Olena Kalashnikova
 - Chair of Communication Science
 Prof. Dr. Christina Holtz-Bacha, Christoph Adrian
 - Chair of Visual Computing
 Prof. Dr.-Ing. Marc Stamminger, Jonas Müller

Research Focus

- methodological foundation: Corpus-Based Discourse Analysis (CDA)
- development of novel techniques (Mixed-Methods Discourse Analysis, MMDA):
 - visualization
 - higher-order collocates
- ultimate goal: assist hermeneutic researchers in interpreting huge amounts of textual data without excessive cherry-picking
- lexical nodes in the case study here:
 - 福島 (Fukushima)
 - 選挙 (elections)
 - 脱原発 (nuclear phase-out)
 - 日本 (Japan) + (原子*)|(原発) (nuclear energy)

focus on methodology

Research Focus

- methodological foundation: Corpus-Based Discourse Analysis (CDA)
- development of novel techniques (Mixed-Methods Discourse Analysis, MMDA):
 - visualization
 - higher-order collocates
- ultimate goal: assist hermeneutic researchers in interpreting huge amounts of textual data without excessive cherry-picking
- lexical nodes in the case study here:
 - 福島 (Fukushima)
 - 選挙 (elections)
 - 脱原発 (nuclear phase-out)
 - 日本 (Japan) + (原子*)|(原発) (nuclear energy)
 - focus on methodology

Introduction

Methodology

Japanese Twitter Corpus in Context Keywords, Collocates, and Discourse Visualization

Case Study: Fukushima Effect

Overview (Mass Media) Japanese Twitter Data

Conclusion

Methodology

Introduction

Methodology

Japanese Twitter Corpus in Context

Keywords, Collocates, and Discourse Visualization

Case Study: Fukushima Effect

Overview (Mass Media) Japanese Twitter Data

Conclusion

Corpora – mass media

Frankfurter Allgemeine Zeitung (2011–2014)

- statistics:
 - 306,580 articles, 1,656,372 paragraphs
 - 145,055,523 tokens (1,981,726 types)
- linguistic annotation:
 - TreeTagger (tokenization, POS-tagging, lemmatization)

Yomiuri Shimbun (2011–2015)

- statistics:
 - 1,688,435 articles, 12,757,433 paragraphs
 - 580,518,367 tokens (392,971 types)
- linguistic annotation:
 - MeCab (SUWs)

Corpora – social media (Twitter)

German Twitter

- 10,266,835 original posts
- linguistic annotation:
 - tokenization: SoMaJo (Proisl and Uhrig, 2016)
 - POS-tagging: SoMeWeTa (Proisl, 2018)
 - lemmatization: work in progress

Japanese Twitter

- 411,452,027 original posts
- linguistic annotation:
 - MeCab + special dictionary: ipadic-neologd (Sato et al., 2017)

+ removal of noise: approximately 20% (Schäfer et al., 2017)

Corpora – social media (Twitter)

German Twitter

- 10,266,835 original posts
- linguistic annotation:
 - tokenization: SoMaJo (Proisl and Uhrig, 2016)
 - POS-tagging: SoMeWeTa (Proisl, 2018)
 - · lemmatization: work in progress

Japanese Twitter

- 411,452,027 original posts
- linguistic annotation:
 - MeCab + special dictionary: ipadic-neologd (Sato et al., 2017)
 - + removal of noise: approximately 20% (Schäfer et al., 2017)

Corpus-Based Discourse Analysis (CDA)

- CDA means analyzing and deconstructing concordance lines (Baker, 2006)
 - concordances are the essence of discourses
- finding discourses: nodes + attitudes
 - (topic) nodes: defined by keywords or (more generally) corpus queries
 - attitudes: collocates that are retrieved by statistical methods
- examples
 - "refugees as victims" (Baker, 2006)
 - "Fukushima as worst case scenario"

in practice:

- look at (n best) collocates of topic node
- make up categories on the fly
- categorize manually

Corpus-Based Discourse Analysis (CDA)

- CDA means analyzing and deconstructing concordance lines (Baker, 2006)
 - concordances are the essence of discourses
- finding discourses: nodes + attitudes
 - (topic) nodes: defined by keywords or (more generally) corpus queries
 - attitudes: collocates that are retrieved by statistical methods
- examples
 - "refugees as victims" (Baker, 2006)
 - "Fukushima as worst case scenario"

in practice:

- look at (n best) collocates of topic node
- · make up categories on the fly
- · categorize manually

Collocates and Keywords

keywords

- given two frequency lists of lexical items
- perform statistical tests on frequency litss
 - always viz. reference corpus
 - measures: log-likelihood, log-ratio, frequency filter

collocates

- given a definition of a subcorpus
- · rate lexical items according to association strength
 - · windows vs. segments (textual co-occurrence)
 - association measures: see above

From Textual Co-Occurrences to Collocates

contingency table (cf. Evert, 2008)

	$w_2 \in t$	$w_2 \not\in t$	
$w_1 \in t$	O ₁₁	O ₁₂	$=R_1$
$w_1 \not\in t$	O ₂₁	O ₂₂	$=R_2$
	$= C_1$	$= C_2$	= N

- calculate expected frequencies subject to independence of co-occurrences (E_{ij})
- · apply association measure

$$LL(O_{11}, O_{12}, O_{21}, O_{22}) = 2\sum_{ij} O_{ij} \log \frac{O_{ij}}{E_{ij}},$$

Extension: Higher-Order Collocates

- 1. discourse collocates
 - straightforward generalization with respect to textual co-occurrence
 - look at co-occurrence frequencies of tweets that were identified to be part of the discourse at hand (topic + attitude)
 - · collocates represent lexical items that play a role in the discourse
- 2. second-order topic-collocates (or attitude-collocates
 - look at co-occurrence frequencies of one set of lexical items c in tweets that are about a certain topic t
 - collocates of c that are particulary important for the

Extension: Higher-Order Collocates

- 1. discourse collocates
 - straightforward generalization with respect to textual co-occurrence
 - look at co-occurrence frequencies of tweets that were identified to be part of the discourse at hand (topic + attitude)
 - · collocates represent lexical items that play a role in the discourse
- 2. second-order topic-collocates (or attitude-collocates)
 - look at co-occurrence frequencies of one set of lexical items c in tweets that are about a certain topic t
 - collocates of c that are particulary important for t

Extension: Visualization

- based on high-dimensional word embeddings (Word2Vec) (Mikolov et al., 2013)
 - basis: 133,526,833 deduplicated and preprocessed Japanese tweets collected between February 2017 and June 2018 via the Streaming API
- t-distributed stochastic neighbour-embedding (t-SNE) to project onto two-dimensional plane (van der Maaten and Hinton, 2008)
 - semantically similar items are pre-grouped together
- size of lexical items represents association strength towards (topic) node

2012.11.07 - 2012.12.24 node: 628.11 twp.m (5062/8084830)

1 福島県市第一条 原発事故 第一条 原発事故 第一条 原発 持工ルノブイリ かまり 第一東電 原染 被曝 汚染 接意 財務 服原発 事故 安全 甲以恩 福島+選挙 避難 福島+脱原発

Case Study: Fukushima Effect

Mass media in the aftermath of 3/11 (Heinrich et al., 2018)

German (FAZ)

- salience of energy transition discourse relatively stable (2011–2014)
- nuclear phase-out (Atomausstieg) as part of this discourse: sparked shortly after 3/11
 - political actors and issues (Ethikkommission, electricity supply)
 - economic actors (RWE)
 - technological issues (Stromnetz)

Japanese (Yomiuri)

- nuclear phase-out (脱原発) in 2011:
 - political actors (菅, 野田, 首相)
 - economic issues (発電, 稼働, 復興)
 - technological aspects (安全, 燃料)
- nuclear phase-out in 2014:
 - elections and politics (演説, as used in 街頭演説)
 - fewer words regarding economics (note アベノミクス)

Introduction

Methodology

Japanese Twitter Corpus in Context Keywords, Collocates, and Discourse Visualization

Case Study: Fukushima Effect

Overview (Mass Media) Japanese Twitter Data

Conclusion

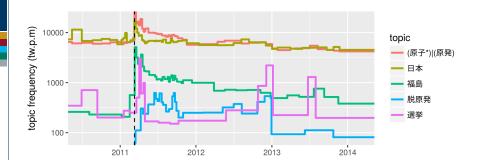


Figure: Frequencies (in tweets per million) of selected topics during the observation period on a logarithmic scale. The dashed line represents March 11, 2011. All observed frequencies peak at or shortly after 3/11.

Figure: Node: 福島 (Fukushima).

Figure: Node: 福島 (Fukushima).

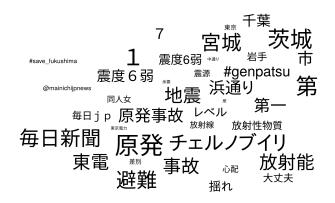


Figure: Node: 福島 (Fukushima).

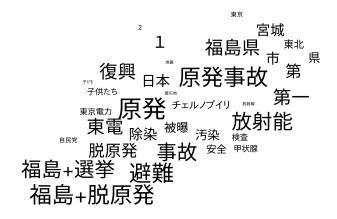


Figure: Node: 福島 (Fukushima).

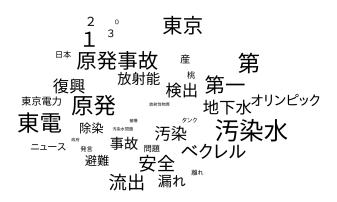


Figure: Node: 福島 (Fukushima).

Figure: Node: 選挙 (elections).

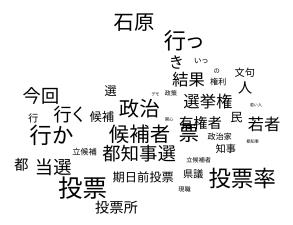


Figure: Node: 選挙 (elections).

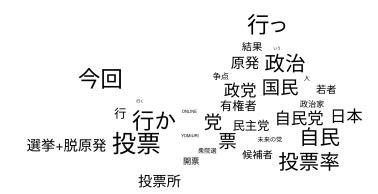


Figure: Node: 選挙 (elections).

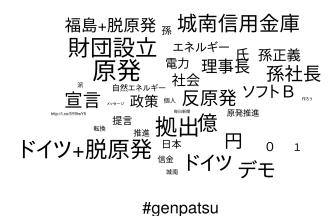


Figure: Node: 脱原発 (phasing out nuclear energy).

福島+脱原発 鎌田慧 派 宣言 福島 #genpatsu

Figure: Node: 脱原発 (phasing out nuclear energy).

Figure: Node: 脱原発 (phasing out nuclear energy).

Figure: Node: 日本 (Japan).

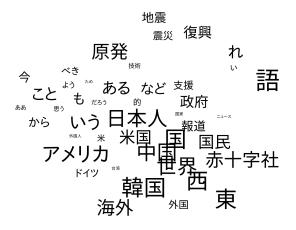


Figure: Node: 日本 (Japan).

Figure: Node: 日本 (Japan).

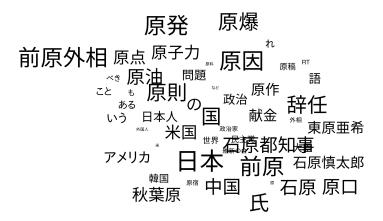


Figure: Discourse Node: 日本 (*Japan*) + (原子*)|(原発) (*nuclear energy*).

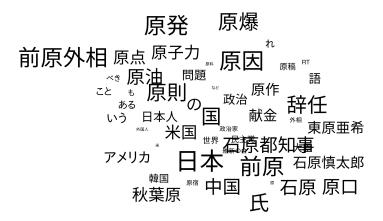


Figure: Discourse collocates of 日本 (Japan) + (原子*)|(原発) (nuclear energy).

2011.03.12 – 2011.12.31 topic: 475.92 tw.p.m (71439/150108634)

Figure: Discourse collocates of 日本 (Japan) + (原子*)|(原発) (nuclear energy).

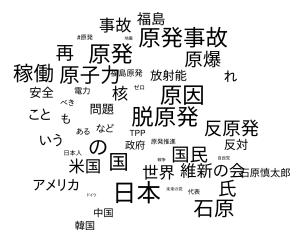


Figure: Discourse collocates of 日本 (Japan) + (原子*)|(原発) (nuclear energy).

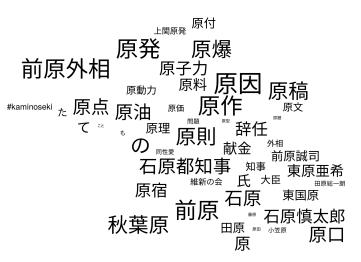


Figure: Second-order topic-collocates of 日本 (Japan) in tweets containing (原子*)|(原発) (nuclear energy).

2011.03.12 - 2011.12.31 topic: 30727.88 tw.p.m (34294/1116055) #原発 #genpatsu 事 停止 前原 石原

Figure: Second-order topic-collocates of 日本 (*Japan*) in tweets containing (原子*)|(原発) (*nuclear energy*).

2012.01.01 - 2015.03.05 topic: 14926.38 tw.p.m (7496/502198) ドイツ+脱原発 国民 秋葉原

Figure: Second-order topic-collocates of 日本 (*Japan*) in tweets containing (原子*)|(原発) (*nuclear energy*).

Conclusion

Qualitative Summary

- 福島 (Fukushima)
 - has always been a topic on Twitter
 - important collocates during the observation period are lexical items referring to the accident (原発, 原発事故) and the hashtag #save_fukushima, but also the electric utility holding company 東電 (TEPCO)
 - focus shifts to political actors 安倍首相 (Prime Minister Shinzō Abe) and the
 results of and measures taken due to the radioactive accident: 除染
 (decontamination), 汚染水 (contaminated water), 放射能 (radioactivity)
- 選挙 (elections)
 - huge peaks in the number of tweets at dates which coincide e.g. with the elections of Tokyo's governor after resignation of 石原 (Shintaro Ishihara)
 - further important collocates are 結果 (results), 都知事選 (gubernatorial election), and 候補(者) (candidate, candidacy)
 - end of 2012: most important collocates have shifted towards 自民 (*Liberal Democratic Party*), nuclear power (plants) (原発)
 - actors change

Qualitative Summary (ctd.)

- 脱原発 (nuclear phase-out)
 - enters the debate only a couple of weeks after 3/11
 - whether or not to "break with nuclear energy" is a discussion led elsewhere, e. g. in ドイツ (*Germany*)
 - further important collocates are 福島 (Fukushima), 原発 (nuclear power plant), and デモ (demonstration)
 - another peak in the end of 2012, with political actors as collocates such as 未来の党 (the *Tomorrow Party of Japan*) and 山本太郎 (*Tarō Yamamoto*)
- 日本 (Japan) and (原子*)|(原発) (nuclear energy)
 - before 3/11: collocates of Japan mostly general (語, other countries)
 - in the aftermath of 3/11: 地震 (earthquake), 復興 (reconstruction), 原発 (nuclear power plant), and 赤十字社 (red cross)
 - after 2012: 原発 (nuclear power plant) remains an important collocate

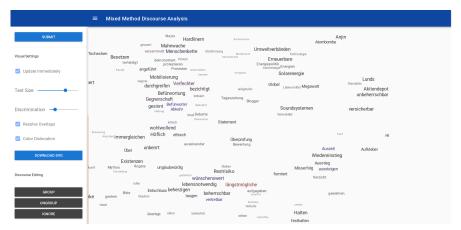
Conclusion and Future Work

- CDA of Japanese Twitter data in the aftermath of 3/11
- focus on methodological advancement of the field
 - visualization (ease manual labour)
 - higher-order collocates (triangulate semantics of discourses)
- qualitative empirical level:
 - nuclear phase-out debate entered Japanese Twitter only several weeks after 3/11
 - salience of discussions about phasing out nuclear energy and about nuclear energy in general is quite volatile and correlates i. a. with elections
 - particular parts of the nuclear energy discussion entered the collocational profile of the very general discourse around Japan
- where do we go from here?

Conclusion and Future Work

- CDA of Japanese Twitter data in the aftermath of 3/11
- focus on methodological advancement of the field
 - visualization (ease manual labour)
 - higher-order collocates (triangulate semantics of discourses)
- qualitative empirical level:
 - nuclear phase-out debate entered Japanese Twitter only several weeks after 3/11
 - salience of discussions about phasing out nuclear energy and about nuclear energy in general is quite volatile and correlates i. a. with elections
 - particular parts of the nuclear energy discussion entered the collocational profile of the very general discourse around Japan
- where do we go from here?

Towards Mixed-Methods Discourse Analysis



Thanks for listening. **Questions?**

References

- Paul Baker. Using Corpora in Discourse Analysis. Continuum, London, 2006.
- Stefan Evert. Corpora and collocations. In Anke Lüdeling and Merja Kytö, editors, *Corpus Linguistics. An International Handbook*, chapter 58. Mouton de Gruyter, Berlin, 2008.
- Michel Foucault. L'Archéologie du savoir. Éditions Gallimard, Paris, 1969.
- Ikuo Gono'i. 2015-nen ANPO, Minshushugi wo futatabi hajimeru wakamono-tachi (ANPO in 2015. The Youth that is restarting Democracy), 2015.
- Philipp Heinrich, Christoph Adrian, Olena Kalashnikova, Fabian Schäfer, and Stefan Evert. A Transnational Analysis of News and Tweets about Nuclear Phase-Out in the Aftermath of the Fukushima Incident. In Andreas Witt, Jana Diesner, and Georg Rehm, editors, *Proceedings of the LREC 2018 "Workshop on Computational Impact Detection from Text Data"*, Paris, 2018. ELRA.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. *CoRR*, abs/1301.3781, 2013.
- Thomas Proisl. SoMeWeTa: A Part-of-Speech Tagger for German Social Media and Web Texts. In *Proceedings* of the Eleventh International Conference on Language Resources and Evaluation (LREC'18), 2018.
- Thomas Proisl and Peter Uhrig. SoMaJo: State-of-the-art tokenization for German web and social media texts. In Paul Cook, Stefan Evert, Roland Schäfer, and Egon Stemle, editors, *Proceedings of the 10th Web as Corpus Workshop (WAC-X) and the EmpiriST Shared Task*, pages 57–62, Berlin, 2016. Association for Computational Linguistics.
- Toshinori Sato, Taiichi Hashimoto, and Manabu Okumura. Implementation of a word segmentation dictionary called mecab-ipadic-neologd and study on how to use it effectively for information retrieval (in japanese). In *Proceedings of the Twenty-three Annual Meeting of the Association for Natural Language Processing*, pages NLP2017–B6–1. The Association for Natural Language Processing, 2017.
- Fabian Schäfer, Stefan Evert, and Philipp Heinrich. Japan's 2014 General Election: Political Bots, Right-Wing Internet Activism and PM Abe Shinzō's Hidden Nationalist Agenda. *Big Data*, 5:1 16, 2017.
- L.J.P van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.