Large-scale evaluation of dependency-based DSMs: Are they worth the effort? Lapesa & Evert, EACL 2017 – extended supplementary material.

1	Dist	ribution of Performance	2
	1.1	Multiple choice: TOEFL	2
	1.2	Prediction of similarity ratings: RG65	3
	1.3	Prediction of similarity ratings: WS353	3
	1.4	Clustering: Almuhareb-Poesio	4
	1.5	Clustering: BATTIG	4
	1.6	Clustering: MITCHELL	5
	1.7	Clustering: ESSLLI	5
	1.8	Semantic priming, multiple choice: SYN	6
	1.9	Semantic priming, multiple choice: ANT	6
	1.10	Semantic priming, multiple choice: COH	7
	1.11	Semantic priming, multiple choice: FPA	7
	1.12	Semantic priming, multiple choice: BPA	8
	1.13	Semantic priming, multiple choice: GEK	8
_			•
2	Expl	anatory Power of DSM Parameters	9
	2.1	TOEFL	9
	2.2	Ratings	10
	2.3		11
	2.4	Semantic priming, paradigmatic relations (SYN, ANT, COH)	12
	2.5	Semantic priming, syntagmatic relations (FPA, BPA, GEK)	13
3	Effe	ct plots	14
3	Effe 3.1	ct plots TOEFL	14 14
3	Effe 3.1 3.2	ct plots TOEFL	14 14 21
3	Effe 3.1 3.2 3.3	ct plots TOEFL WS353 RG65	14 14 21 28
3	Effe 3.1 3.2 3.3 3.4	ct plots TOEFL WS353 RG65 AP	14 14 21 28 35
3	Effe 3.1 3.2 3.3 3.4 3.5	ct plots TOEFL WS353 RG65 AP BATTIG	14 14 21 28 35 43
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL	14 14 21 28 35 43 52
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI	14 14 21 28 35 43 52 60
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN	14 14 21 28 35 43 52 60 69
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT	14 14 21 28 35 43 52 60 69 76
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH	 14 14 21 28 35 43 52 60 69 76 83
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA	14 14 21 28 35 43 52 60 69 76 83 91
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA BPA<	14 14 21 28 35 43 52 60 69 76 83 91 98
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA BPA GEK	14 14 21 28 35 43 52 60 69 76 83 91 98 105
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA BPA GEK	14 14 21 28 35 43 52 60 69 76 83 91 98 105
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 Best	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA BPA GEK TOEFI	14 14 21 28 35 43 52 60 69 76 83 91 98 105 112
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 Best 4.1	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA BPA GEK TOEFL Potiere	14 14 21 28 35 43 52 60 69 76 83 91 98 105 112 112
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 Best 4.1 4.2	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA BPA GEK TOEFL Ratings Clustering	14 14 21 28 35 43 52 60 69 76 83 91 98 105 112 112 113
3	Effe 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 Best 4.1 4.2 4.3 4.4	ct plots TOEFL WS353 RG65 AP BATTIG MITCHELL ESSLLI SYN ANT COH FPA BPA GEK models TOEFL Ratings Clustering Citering	14 14 21 28 35 43 52 60 69 76 83 91 98 105 112 112 113 114

1 Distribution of Performance

1.1 Multiple choice: TOEFL

Figure 1.3: Unreduced, typed

Figure 1.4: Reduced, typed

1.2 Prediction of similarity ratings: RG65

Figure 1.7: Unreduced, typed

1.3 Prediction of similarity ratings: WS353

Figure 1.9: Unreduced, filtered

Figure 1.11: Unreduced, typed

Figure 1.8: Reduced, typed

Figure 1.10: Reduced, filtered

Figure 1.12: Reduced, typed

1.4 Clustering: Almuhareb-Poesio

Figure 1.15: Unreduced, typed

Figure 1.14: Reduced, filtered Min: 0.13; Max: 0.78; Mean: 0.53; Stidev :0.116

Figure 1.16: Reduced, typed

1.5 Clustering: BATTIG

Figure 1.17: Unreduced, filtered

Figure 1.19: Unreduced, typed

Figure 1.18: Reduced, filtered

Figure 1.20: Reduced, typed

1.6 Clustering: MITCHELL

Figure 1.23: Unreduced, typed

Figure 1.22: Reduced, filtered Min: 0.25; Max: 0.95; Mean: 0.64; Stdev :0.117

Figure 1.24: Reduced, typed

1.7 Clustering: ESSLLI

Figure 1.25: Unreduced, filtered

Figure 1.27: Unreduced, typed

Figure 1.26: Reduced, filtered

Figure 1.28: Reduced, typed

1.8 Semantic priming, multiple choice: SYN

Figure 1.31: Unreduced, typed

1.9 Semantic priming, multiple choice: ANT

Figure 1.33: Unreduced, filtered

Figure 1.35: Unreduced, typed

Figure 1.30: Reduced, filtered

Figure 1.32: Reduced, typed

Figure 1.34: Reduced, filtered

Figure 1.36: Reduced, typed

1.10 Semantic priming, multiple choice: COH

Figure 1.39: Unreduced, typed

1.11 Semantic priming, multiple choice: FPA

Figure 1.41: Unreduced, filtered

Figure 1.43: Unreduced, typed

Figure 1.38: Reduced, filtered

Figure 1.40: Reduced, typed

Figure 1.42: Reduced, filtered

Figure 1.44: Reduced, typed

1.12 Semantic priming, multiple choice: BPA

Figure 1.47: Unreduced, typed

1.13 Semantic priming, multiple choice: GEK

Figure 1.49: Unreduced, filtered

Figure 1.51: Unreduced, typed

Figure 1.46: Reduced, filtered

Figure 1.48: Reduced, typed

Figure 1.50: Reduced, filtered

Figure 1.52: Reduced, typed

2 Explanatory Power of DSM Parameters

2.1

TOEFL

Figure 2.53: Unreduced, filtered

Figure 2.55: Unreduced, typed

Figure 2.54: Reduced, filtered

Figure 2.56: Reduced, typed

2.2 Ratings

Figure 2.57: Unreduced, filtered

Figure 2.58: Reduced, filtered

Figure 2.59: Unreduced, typed

Figure 2.60: Reduced, typed

2.3 Clustering

Figure 2.61: Unreduced, filtered

Figure 2.62: Reduced, filtered

Figure 2.63: Unreduced, typed

Figure 2.64: Reduced, typed

Semantic priming, paradigmatic relations (SYN, ANT, COH) 2.4

Figure 2.65: Unreduced, filtered

score

metric

corpus

parser

dep.type

dep.style

path.length

context.dim

transformation

Figure 2.66: Reduced, filtered

Figure 2.67: Unreduced, typed

Figure 2.68: Reduced, typed

2.5 Semantic priming, syntagmatic relations (FPA, BPA, GEK)

Figure 2.69: Unreduced, filtered

Figure 2.70: Reduced, filtered

Figure 2.71: Unreduced, typed

Figure 2.72: Reduced, typed

3 Effect plots

3.1 TOEFL

3.1.1 Main Effects

3.1.2 Interactions: filtered, unreduced

Figure 3.14: TOEFL, filtered, unreduced

45-5000 10000 20000 50000 100000 Figure 3.18: TOEFL, filtered, unreduced

70-

65-

60-

55-

50-

Figure 3.19: TOEFL, filtered, unreduced

70

65

60-

55

50

45

bnc

ukwac

wacky Figure 3.21: TOEFL, filtered, unreduced

3.1.3 Interactions: filtered, reduced

Figure 3.23: TOEFL, filtered, reduced

3.1.4 Interactions: typed, unreduced

Figure 3.31: TOEFL,typed,unreduced

Figure 3.34: TOEFL,typed,unreduced

Figure 3.35: TOEFL,typed,unreduced

Figure 3.37: TOEFL,typed,unreduced

3.2 WS353

3.2.1 Main Effects

Figure 3.14: WS353, filtered, unreduced

3.2.4 Interactions: typed, unreduced

Figure 3.31: WS353,typed,unreduced

3.2.5 Interactions: typed, reduced

Figure 3.41: WS353,typed,reduced

Figure 3.42: WS353,typed,reduced

3.3 RG65

3.3.1 Main Effects

Figure 3.14: RG65, filtered, unreduced

Figure 3.18: RG65, filtered, unreduced

3.3.3 Interactions: filtered, reduced

Figure 3.25: RG65, filtered, reduced

Figure 3.30: RG65,typed,unreduced

Figure 3.37: RG65,typed,unreduced

3.4 AP

3.4.1 Main Effects

3.4.2 Interactions: filtered, unreduced

Figure 3.16: AP, filtered, unreduced

36

3.4.3 Interactions: filtered, reduced

37

Figure 3.26: AP, filtered, reduced

Figure 3.28: AP,filtered,reduced

Figure 3.31: AP, filtered, reduced

Figure 3.33: AP,typed,unreduced

Figure 3.37: AP,typed,unreduced

Figure 3.38: AP,typed,unreduced

3.4.5 Interactions: typed, reduced

41

Figure 3.46: AP,typed,reduced

Figure 3.47: AP,typed,reduced

3.5 BATTIG

3.5.1 Main Effects

3.5.2 Interactions: filtered, unreduced

Figure 3.20: BATTIG, filtered, unreduced

Figure 3.21: BATTIG, filtered, unreduced

Figure 3.23: BATTIG, filtered, reduced

Figure 3.31: BATTIG, filtered, reduced

3.5.4 Interactions: typed, unreduced

Figure 3.36: BATTIG,typed,unreduced

Figure 3.40: BATTIG,typed,unreduced

Figure 3.41: BATTIG,typed,unreduced

Figure 3.42: BATTIG,typed,unreduced

Figure 3.44: BATTIG,typed,reduced

0.9

0.8

0.7

0.6

Figure 3.48: BATTIG,typed,reduced

0.9

0.8-

0.7

0.6

٨٨

Figure 3.51: BATTIG,typed,reduced

50

100

ò

3.6 MITCHELL

3.6.1 Main Effects

3.6.2 Interactions: filtered, unreduced

Figure 3.14: MITCHELL, filtered, unreduced

Figure 3.18: MITCHELL, filtered, unreduced

3.6.3 Interactions: filtered, reduced

Figure 3.24: MITCHELL, filtered, reduced

Figure 3.30: MITCHELL, filtered, reduced

Number of Skipped Dimensions * Transformation

Figure 3.28: MITCHELL, filtered, reduced

Number of Skipped Dimensions * Metric

55

Figure 3.31: MITCHELL, filtered, reduced

3.6.4 Interactions: typed, unreduced

Figure 3.33: MITCHELL,typed,unreduced

Figure 3.36: MITCHELL,typed,unreduced

Figure 3.37: MITCHELL,typed,unreduced

3.6.5 Interactions: typed, reduced

3.7 ESSLLI

3.7.1 Main Effects

3.7.2 Interactions: filtered, unreduced

Figure 3.18: ESSLLI, filtered, unreduced

Figure 3.20: ESSLLI, filtered, unreduced

Figure 3.21: ESSLLI, filtered, unreduced

Figure 3.23: ESSLLI, filtered, reduced

Dependency group * Metric

Figure 3.27: ESSLLI, filtered, reduced

0.75

Figure 3.31: ESSLLI, filtered, reduced

Figure 3.33: ESSLLI, filtered, reduced

Figure 3.41: ESSLLI,typed,unreduced

Figure 3.46: ESSLLI,typed,unreduced

Figure 3.52: ESSLLI,typed,reduced

Figure 3.56: ESSLLI,typed,reduced

Figure 3.57: ESSLLI,typed,reduced

3.8 SYN

3.8.1 Main Effects

Figure 3.17: SYN, filtered, unreduced

Figure 3.14: SYN, filtered, unreduced

Figure 3.18: SYN, filtered, unreduced

Figure 3.24: SYN, filtered, reduced

Figure 3.26: SYN, filtered, reduced

Figure 3.28: SYN, filtered, reduced

3.8.4 Interactions: typed, unreduced

Figure 3.30: SYN,typed,unreduced

3.8.5 Interactions: typed, reduced

Figure 3.37: SYN,typed,reduced

Figure 3.41: SYN,typed,reduced

.

Figure 3.44: SYN,typed,reduced

3.9 ANT

3.9.1 Main Effects

3.9.3 Interactions: filtered, reduced

Score * Transformation

Figure 3.26: ANT, filtered, reduced

100

ò 50

Score * Metric

Figure 3.28: ANT, filtered, reduced

Figure 3.30: ANT, filtered, reduced

3.9.4 Interactions: typed, unreduced

Figure 3.31: ANT,typed,unreduced

Figure 3.32: ANT,typed,unreduced

Figure 3.34: ANT,typed,unreduced

Figure 3.35: ANT,typed,unreduced

3.9.5 Interactions: typed, reduced

Figure 3.39: ANT,typed,reduced

Figure 3.41: ANT,typed,reduced

3.10 COH

3.10.1 Main Effects

Figure 3.14: COH, filtered, unreduced

Figure 3.18: COH, filtered, unreduced

3.10.3 Interactions: filtered, reduced

Figure 3.21: COH, filtered, reduced

Figure 3.26: COH, filtered, reduced

Figure 3.27: COH, filtered, reduced

Figure 3.33: COH, filtered, reduced

Figure 3.35: COH,typed,unreduced

Figure 3.39: COH,typed,unreduced

Figure 3.41: COH,typed,unreduced

Figure 3.43: COH,typed,unreduced

3.10.5 Interactions: typed, reduced

Figure 3.45: COH,typed,reduced

Figure 3.47: COH,typed,reduced

3.11 FPA

3.11.1 Main Effects

Figure 3.18: FPA, filtered, unreduced

3.11.3 Interactions: filtered, reduced

Number of Skipped Dimensions * Transformation

transformation

90-

Figure 3.28: FPA, filtered, reduced

3.11.4 Interactions: typed, unreduced

Figure 3.32: FPA,typed,unreduced

Figure 3.36: FPA,typed,unreduced

3.12 BPA

3.12.1 Main Effects

Figure 3.13: BPA, filtered, unreduced

Figure 3.15: BPA, filtered, unreduced

Figure 3.18: BPA, filtered, unreduced

3.12.2 Interactions: filtered, unreduced

Figure 3.26: BPA, filtered, reduced

Figure 3.27: BPA, filtered, reduced

Figure 3.28: BPA, filtered, reduced

3.12.4 Interactions: typed, unreduced

Figure 3.37: BPA,typed,unreduced

3.12.5 Interactions: typed, reduced

Figure 3.43: BPA,typed,reduced

Number of Skipped Dimensions * Metric

90

85

Figure 3.46: BPA,typed,reduced

3.13 GEK

3.13.1 Main Effects

3.13.2 Interactions: filtered, unreduced

Figure 3.14: GEK, filtered, unreduced

3.13.3 Interactions: filtered, reduced

Figure 3.18: GEK, filtered, reduced

Figure 3.22: GEK, filtered, reduced

Number of Skipped Dimensions * Transformation transformatio none 🔶 log 📥 root 🔶 sigmo 80-70 60-50 ò 100

Figure 3.24: GEK, filtered, reduced

Figure 3.26: GEK, filtered, reduced

3.13.4 Interactions: typed, unreduced

Figure 3.27: GEK,typed,unreduced

Figure 3.30: GEK,typed,unreduced

3.13.5 Interactions: typed, reduced

Figure 3.36: GEK,typed,reduced

Figure 3.37: GEK,typed,reduced

4 Best models

4.1 TOEFL

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	accuracy
filtered	wacky	stanford	core	ccproc	1	50k	z-score	none	cosine	rank	85.00
typed	wacky	stanford	core	basic	2	100k	z-score	none	cosine	rank	83.75
typed	wacky	stanford	core	basic	2	50k	z-score	none	cosine	rank	83.75

Table 4.1: TOEFL, unreduced, best models - Filtered vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	accuracy
filtered	ukwac	malt	external	basic	2	5k	t-score	log	500	100	cosine	rank	93.75
filtered	ukwac	stanford	external	basic	3	5k	t-score	log	500	900	cosine	rank	93.75
filtered	wacky	stanford	external	basic	2	10k	simple-ll	log	500	900	cosine	rank	93.75
typed	ukwac	stanford	external	basic	4	50k	MI	none	100	700	cosine	dist	91.25
typed	ukwac	stanford	external	basic	4	50k	MI	none	100	900	cosine	dist	91.25
typed	ukwac	stanford	external	basic	1	100k	MI	root	100	900	cosine	dist	91.25

Table 4.2: TOEFL, reduced. Filtered (3 runs tied for best result) vs. Typed (3 runs tied for best result)

4.2 Ratings

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	r
filtered	wacky	malt	external	ccproc	1	50k	MI	none	cosine	rank	0.88
typed	wacky	malt	core	ccproc	1	100k	z-score	none	manhattan	rank	0.80

Table 4.3: RG65, unreduced, best models - Filtered vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	r
filtered	ukwac	malt	core	basic	4	50k	MI	none	50	500	cosine	rank	0.88
typed	wacky	malt	core	basic	1	100k	z-score	log	100	900	cosine	rank	0.87

Table 4.4: RG65, reduced, best models - Filtered vs. Type

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	r
filtered	ukwac	stanford	external	ccproc	4	50k	z-score	none	cosine	rank	0.71
typed	ukwac	stanford	external	basic	1	100k	z-score	root	cosine	rank	0.59

Table 4.5:	WS353,	unreduced,	best models	- Filtered	vs.	Typed
------------	--------	------------	-------------	------------	-----	-------

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	r
filtered	ukwac	stanford	core	ccproc	3	100k	z-score	root	50	900	cosine	rank	0.72
typed	ukwac	stanford	external	basic	1	100k	MI	none	50	900	cosine	rank	0.66

Table 4.6: WS353, reduced, best models - Filtered vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	purity
filtered	ukwac	malt	external	basic	1	100k	z-score	log	cosine	rank	0.75
typed	wacky	stanford	external	ccproc	1	100k	z-score	none	manhattan	rank	0.75
typed	wacky	malt	external	ccproc	1	100k	z-score	root	cosine	rank	0.75
typed	wacky	stanford	external	ccproc	1	100k	z-score	none	manhattan	rank	0.75

Table 4.7: AP, unreduced, best models - Filtered vs. Typed (3 runs tied for best result)

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	purity
filtered	wacky	malt	core	ccproc	1	20k	t-score	none	0	900	manhattan	rank	0.75
typed	ukwac	stanford	external	basic	1	100k	z-score	root	0	300	cosine	rank	0.78

Table 4.8: AP, reduced, best models - Filtered vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	purity
filtered	bnc	malt	external	basic	2	100k	z-score	none	manhattan	rank	0.98
filtered	ukwac	malt	core	basic	2	100k	simple-ll	log	cosine	rank	0.98
filtered	wacky	stanford	external	basic	2	50k	z-score	none	manhattan	dist	0.98
typed	ukwac	stanford	core	ccproc	1	100k	Dice	root	cosine	rank	0.95

Table 4.9: BATTIG, unreduced, best models - Filtered (46 runs tied for best result, 3 hand-picked examples shown) vs.Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	purity
filtered	bnc	malt	core	basic	4	50k	z-score	root	0	500	cosine	rank	0.99
filtered	ukwac	malt	core	ccproc	4	100k	z-score	none	100	500	manhattan	rank	0.99
filtered	ukwac	malt	external	basic	1	100k	freq	log	50	300	cosine	dist	0.99
typed	ukwac	stanford	core	ccproc	1	100k	z-score	root	50	100	cosine	rank	1.00

Table 4.10: BATTIG, reduced, best models - Filtered (520 runs tied for best result, 3 hand-picked examples shown) vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	purity
filtered	bnc	stanford	external	basic	1	50k	MI	none	cosine	rank	0.91
filtered	wacky	stanford	external	basic	1	100k	simple-ll	log	manhattan	rank	0.91
filtered	ukwac	stanford	external	basic	1	50k	z-score	log	manhattan	rank	0.91
filtered	wacky	stanford	external	ccproc	1	100k	z-score	none	manhattan	dist	0.91
typed	bnc	malt	external	basic	1	20k	t-score	sigmoid	cosine	rank	0.89
typed	bnc	malt	external	basic	1	50k	MI	root	cosine	rank	0.89

Table 4.11: ESSLLI, unreduced, best models - Filtered (4 runs tied for best result) vs. Typed (2 runs tied for best result)

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	purity
filtered	ukwac	stanford	core	basic	1	100k	simple-ll	log	50	700	cosine	dist	0.98
filtered	ukwac	stanford	core	basic	1	50k	tf.idf	root	50	500	cosine	dist	0.98
filtered	wacky	malt	external	basic	3	100k	z-score	none	0	700	manhattan	rank	0.98
typed	ukwac	stanford	external	basic	1	100k	simple-ll	log	50	100	cosine	rank	0.98

Table 4.12: ESSLLI, reduced, best models - Filtered (29 runs tied for best result 3 hand-picked examples shown) vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	purity
filtered	bnc	external	malt	basic	1	100k	simple-ll	log	cosine	rank	0.93
filtered	ukwac	external	malt	basic	3	10k	simple-ll	root	cosine	rank	0.93
filtered	bnc	external	stanford	basic	2	50k	simple-ll	root	cosine	rank	0.93
typed	bnc	external	stanford	basic	1	100k	z-score	none	manhattan	dist	0.90
typed	bnc	external	stanford	basic	1	50k	z-score	none	manhattan	dist	0.90
typed	bnc	external	stanford	basic	2	100k	z-score	none	cosine	rank	0.90

Table 4.13: MITCHELL, unreduced, best models - Filtered (33 runs tied for best result, 3 hand-picked examples shown) vs. Typed (3 runs tied for best result).

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	purity
filtered	bnc	stanford	external	basic	2	20k	z-score	root	0	700	cosine	rank	0.97
typed	bnc	malt	external	ccproc	1	100k	Dice	root	50	100	cosine	rank	0.95
typed	bnc	stanford	external	basic	1	100k	z-score	root	50	300	cosine	rank	0.95

Table 4.14: MITCHELL, reduced, best models - Filtered vs. Typed (2 runs tied for best result)

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	accuracy
filtered	wacky	stanford	external	ccproc	1	100k	z-score	log	cosine	rank	97.94
filtered	wacky	stanford	external	ccproc	1	50k	simple-ll	log	cosine	rank	97.94
filtered	wacky	stanford	external	ccproc	1	50k	z-score	root	cosine	rank	97.94
filtered	wacky	stanford	external	ccproc	1	5k	z-score	none	manhattan	rank	97.94
typed	wacky	stanford	external	ccproc	1	100k	z-score	none	cosine	rank	96.56
typed	wacky	stanford	external	basic	2	100k	z-score	none	cosine	rank	96.56

Table 4.15: SYN, unreduced, best models - Filtered (4 runs tied for best result) vs. Typed (2 runs tied for best result)

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	accuracy
filtered	ukwac	stanford	external	ccproc	1	50k	z-score	log	100	900	cosine	rank	99.31
typed	ukwac	stanford	external	basic	1	100k	tf.idf	log	50	900	cosine	rank	97.25

Table 4.16: SYN, reduced, best models - Filtered vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	accuracy
filtered	bnc	malt	core	basic	4	10k	frequency	none	manhattan	rank	100.00
filtered	ukwac	stanford	external	basic	3	100k	z-score	none	cosine	rank	100.00
filtered	wacky	stanford	core	basic	3	20k	t-score	none	cosine	rank	100.00
typed	bnc	malt	core	ccproc	1	50k	MI	none	cosine	rank	100.00
typed	ukwac	malt	external	ccproc	1	10k	Dice	none	cosine	rank	100.00
typed	wacky	malt	core	basic	4	50k	simple-ll	log	manhattan	rank	100.00

Table 4.17: ANT, unreduced, best models - Filtered (5387 runs tied for best result, 3 hand-picked examples shown) vs. Typed (1469 runs tied for best result, 3 hand-picked examples shown).

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	accuracy
filtered	bnc	malt	core	ccproc	4	50k	MI	none	0	700	cosine	rank	100.00
filtered	wacky	stanford	external	ccproc	2	100k	MI	log	0	900	cosine	rank	100.00
filtered	ukwac	stanford	external	ccproc	1	5k	MI	root	0	300	cosine	dist	100.00
typed	ukwac	malt	core	basic	4	20k	tf.idf	log	100	700	cosine	dist	100.00
typed	wacky	stanford	external	ccproc	3	5k	simple-ll	sigmoid	50	500	manhattan	rank	100.00
typed	wacky	stanford	external	ccproc	1	5k	t-score	cosine	50	900	cosine	rank	100.00

Table 4.18: ANT, reduced, best models - Filtered (23209 runs tied for best result, 3 hand-picked examples shown) vs. Typed: (805 runs tied for best result, 3 hand-picked examples shown).

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	accuracy
filtered	wacky	stanford	external	ccproc	1	50k	simple-ll	root	cosine	rank	100.00
filtered	ukwac	stanford	external	basic	1	50k	Dice	none	cosine	rank	100.00
filtered	bnc	stanford	core	basic	1	100k	simple-ll	log	cosine	rank	100.00
typed	wacky	stanford	external	ccproc	1	10k	simple-ll	none	manhattan	dist	100.00
typed	wacky	stanford	external	ccproc	2	50k	z-score	none	cosine	rank	100.00
typed	ukwac	stanford	core	ccproc	1	100k	MI	sigmoid	cosine	rank	100.00

Table 4.19: COH, unreduced, best models - Filtered (1139 runs tied for best result, 3 hand-picked examples shown) vs. Typed (721 runs tied for best result, 3 hand-picked examples shown).

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	accuracy
filtered	ukwac	stanford	external	basic	2	100k	MI	log	50	500	cosine	rank	100.00
filtered	wacky	stanford	external	ccproc	2	5k	z-score	log	50	900	cosine	rank	100.00
filtered	ukwac	malt	core	basic	1	10k	MI	none	50	700	manhattan	rank	100.00
typed	bnc	stanford	core	ccproc	1	10k	MI	root	0	900	cosine	rank	100.00
typed	wacky	stanford	external	ccproc	3	50k	z-score	root	0	700	cosine	rank	100.00
typed	ukwac	stanford	external	ccproc	1	100k	t-score	sigmoid	0	700	cosine	rank	100.00

Table 4.20: COH, reduced, best models - Filtered (8237 runs tied for best result, 3 hand-picked examples shown) vs. Typed (2617 runs tied for best result, 3 hand-picked examples shown).

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	accuracy
filtered	ukwac	stanford	core	basic	2	100k	Dice	none	cosine	rank	97.22
filtered	ukwac	stanford	core	basic	2	50k	z-score	none	cosine	rank	97.22
filtered	wacky	malt	external	basic	4	50k	z-score	none	cosine	rank	97.22
typed	wacky	stanford	core	basic	1	50k	MI	none	cosine	rank	88.19
typed	wacky	stanford	external	basic	1	100k	MI	none	cosine	rank	88.19
typed	wacky	stanford	external	basic	1	50k	z-score	none	manhattan	rank	88.19

Table 4.21: FPA, unreduced, best models - Filtered (9 runs tied for best result, 3 hand-picked examples shown). Typed (5 runs tied for best result, 3 hand-picked examples shown)

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	accuracy
filtered	wacky	malt	external	ccproc	3	20k	z-score	none	0	900	cosine	dist	97.22
filtered	ukwac	stanford	core	ccproc	4	10k	tf.idf	none	50	50	manhattan	rank	97.22
filtered	wacky	stanford	external	basic	3	10k	z-score	none 0	900	cosine	rank		97.22
typed	ukwac	stanford	external	basic	1	100k	z-score	root	50	900	cosine	rank	90.28

Table 4.22: FPA, reduced, best models -. Filtered (15 runs tied for best result, 3 hand-picked examples shown) vs. Typed.

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	accuracy
filtered	ukwac	malt	core	basic	3	100k	z-score	root	cosine	rank	97.75
filtered	ukwac	malt	external	basic	2	100k	Dice	log	cosine	rank	97.75
filtered	ukwac	malt	external	ccprocessed	4	20k	z-score	none	cosine	rank	97.75
typed	ukwac	malt	external	basic	1	100k	z-score	root	cosine	rank	92.13

Table 4.23: BPA, unreduced, best models - Filtered (43 runs tied for best result, 3 hand-picked examples shown) vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	accuracy
filtered	bnc	malt	external	ccprocessed	3	100k	MI	none	50	700	cosine	rank	98.88
filtered	ukwac	malt	core	basic	4	100k	simple-ll	log	50	700	cosine	rank	98.88
filtered	ukwac	malt	core	ccprocessed	3	100k	Dice	root	50	500	cosine	rank	98.88
typed	ukwac	stanford	core	basic	2	100k	Dice	root	100	900	cosine	rank	95.51
typed	ukwac	stanford	core	basic	2	100k	Dice	root	100	900	cosine	rank	95.51

Table 4.24: BPA, reduced, best models - Filtered (365 runs tied for best result) vs. Typed (2 models tied for best result)

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	metric	rel.ind	accuracy
filtered	ukwac	stanford	external	basic	4	50k	z-score	none	cosine	rank	95.54
typed	ukwac	stanford	external	basic	1	100k	z-score	none	cosine	rank	87.13

Table 4.25: GEK, unreduced, best models - Filtered vs. Typed

	corpus	parser	d.group	d.style	p.len	c.dim	score	transf	d.skip	n.dim	metric	rel.ind	accuracy
filtered	ukwac	malt	external	basic	4	10k	MI	none	50	700	manhattan	rank	95.79
filtered	ukwac	malt	external	basic	4	50k	Dice	root	50	900	cosine	dist	95.79
filtered	ukwac	malt	external	basic	4	50k	Dice	root	50	900	cosine	rank	95.79
filtered	ukwac	stanford	external	ccproc	3	50k	Dice	root	50	900	cosine	dist	95.79
typed	ukwac	malt	core	basic	2	100k	tf.idf	log	50	300	cosine	dist	89.60
typed	ukwac	malt	external	basic	2	100k	frequency	log	50	900	cosine	dist	89.60

Table 4.26: GEK, reduced, best models - Filtered (4 runs tied for best result). Typed (2 runs tied for best result).